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Abstract: We examine the logical probabilistic modelling of a
complex system’s blocks failures with the considerations of the
connections between the blocks, based on the logical linguistic
approach. We describe the modelling procedure, implementing
the logical probabilistic and logical linguistic modelling
approaches. We developed a model describing a simplified
solution of accounting the blocks’ connections.
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|. INTRODUCTION

While any block of the system is used, it experiences the
impact of various factors, which leads to altering (worsening)
of itstechnical condition with the passing of time. That |eads
to failure probability of that block as well asthat of the entire
system. The peculiarity of those factors is their values’
stochastic vibration with the passing of time. The most
considerable factors are technological strains, durability
characteristics of the unit’s material, its geometrical
parameters. In addition, it isvital to distinguish the fulfillment
of the technological process conditions, the quality of
maintenance, repairs, etc. [6]. The mentioned factors are
stochastic, and, as such, thetime of the failure is aso random.
Thus, it is suitable to perform the analysis of the complex
system failure probability altering with the passing of time
and the prediction of its failure via the mathematical and
computer modelling.

While modelling, it is common to set the four types of the
initial information; the repair statistics, the technological
stress data, the resource estimation, and the diagnostic
statistics[8]. That allowsto divide the existing models to four
types, namely resource model, based on the repair dates’ data;
the force model, based on the durability and the geometrical
parameters of the block and the statistics of the technological
stresses; diagnostic model, based on the diagnostic data; and
expert model, based on the expect estimations of the system
blocks’ resources. While using any of the mentioned models
we have first to define the predicted parameters, and then
perform the prediction procedure.

The expert model is the most simple of all the parametrized
models. We define its parameters are defined based on the
expert estimations of the system blocks’ resources. The set of
the initial data for this model is given as the expert
estimations. Usage of thismodel is suitable for the early stage
of the running of the equipment, when no sufficient statistical
information on repairs and technical maintenanceisavailable.
One of the most promising approaches for creating of the
expert models is the development of the logical probabilistic

methods, which use the functions of algebra of logic (FAL)
for analytical views of the system’s working conditions and
the strict ways of converting FAL to probabilistic functions,
which objectively expressthereliability of thissystem[7, 10].
The benefit of the logical probabilistic approach for the
engineers is mainly in their high strictness and the vast
possibilities for the analysis of every element’s impact to the
whole system’s reliability. However, there are aso
complexities for the active usage of such methods. Namely,
for the complex tasks and structures, which are described by a
FAL of any form, it is quite complex to transform the system’s
description into the probabilistic form.

While transforming the FAL into aZhegalkin polynomial itis
easy to formalize the computation of the probability of the
resulting complex logical function (CLF) [1]. However, a
CLF describing the failure of a complex system contains a
high number of summands. Thus, even more summands will
be present in the formula, which computes its probability,
since the number of the summands in the expression of the
CLF probability is an exponent function of the logical
summands’ count. It is unlikely that an algorithm for drastic
simplifying of exponential computationswill be found. Inthe
case of transforming the CLF to orthogonal format (of a
perfect digunctive normal form), the quantity of its
summandsis also an exponential function of theinitial count.
Thus, the computing of the probability of the logical function
directly, without any initial approximations of the significant
summands count leads to very high expends of the processing
time or memory [5].

However, we can decrease the amount of computations if we
estimate the errors of the summands that are remote from the
start of the polynomial, which have a small impact on the
computed probability. That lets us to decrease the
computations’ amounts if we do not take into account the
small members of the polynomial of the CLF [5].

For instance, while computing the probability of a CLF
polynomial, which contains 45 summands, it is enough to
account the first 10 to 15 ones, and then the computation time
will be more than 3 times less [2]. In addition, the lexical
graphic ordering of the fundamental vector of the CLF
ensures the independent computing of the summands in the
polynomial expression for its probability, which alows to
control the computation process and to make decisions about
its terminating while approaching the needed precision [2].
The drawback of such approach is that we need to ensure the
independence of the logical variablesthat we usein the CLF.
We can aso make the computing of the complex system
failure based on the orthogonal transformationsin the algebra
of tuples [3]. Thisis quite a consuming operation; however,
there were devel oped methods of its simplifying [9], whichin
many cases allow to drastically decrease the computing time
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for formulae with a high number of variables. For instance, if
we use the computation result in numerous subsequent usages
with the atering probability values, then the time
consumption isjustified.

We can considerably reduce the number of computation
operations in those cases, when the initial logic formula
changes itself due to the changes in the examined system [9].
Furthermore, in the algebra of the tuples we can get the
computation formula for precise probability computation
even in those cases when the sub formulae in the digunction
are not mutually independent [4]. Yet while estimating the
changes in CLF describing system’s failure with the passing
of time and with the accounting the connections between the
blocks (excluding the cases with the simplest schemes), there
appear certain complexities and ambiguities [7, 10]. In the
current chapter, we examine the possible solutions to the
problem of the complex system failure probability modelling
with the passing of time with the accounting of connections
between the system’s blocks.

Il. COMPUTING THE FAILURE PROBABILITIES OF A
COMPLEX SYSTEM

While using the method of FAL algebraic transformation,
described in[6, 7, 10], we can write down the following CLF
which describes the failure probability of an n blocks system.
Y =AF (1)

Where A is a rectangular binary matrix containing the
identification failure rows C;;, which have the length of N =
2n—-1 and consist of ones and zeroes; F is a fundamental
vector of the logical failure system @; (¢; = 1 means that the
ith block is broken) which is also of the length N = 2n - 1.
The fundamental vector F isthe ordered set of the elements of
the Cartesian multiplication of the basis vector of the system’s
blocks failures:

7 = (04,0, 0,) (2)

Thus

F' :<(p17(\02’""(\Dn’(Pl(\DZ!(Pl(P3’"'Y(Pn—l(Pn""’(Pl(pz(\DS""(Pn—l(pn>
©)

The distribution of zeroes and ones in the identification
failure rows C;; hasto represent the physically feasible system
failures. So, if n =4 and if we account the failures of only the
first and the second system blocks the row should be as
follows:

C, =(11,0,1,0,0,0,0,0,0,0,0,0,0,0,0) (4)

That means that either (¢, =1A¢, =1) or (¢, =1ve, =1)
and all the other members equal to zero. That means that
depending on the failure type Y; there will be different
combinations in the rows C;. Then we define the failure type
by the following formula:

Y, =CF (5

If we know the failure probabilities for the ith system blocks
Pi{x =1}, then if their failures are independent the
probability of the jthfailure type of the system Py{ Y; = 1} can
be computed approximately, using the following polynomial
formula[8]:

P, = (—1)02 P+(-)'Y PP +..+ (—1)“1]L[ P (6)
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Where r isthe length of Y; or the number of onesin the row
Cj, j #n are the numbers of the members of the polynomial
(5), P; are the computed or given probability values of theith
member of the polynomial (5). However, we should definethe
required computation precision AP; and continue the
computation process, started from the first member of the
polynomial (6), until the delta is lesser than AP;. Asthe result
of the computation, we shall receive the vector of the system
failure probabilities
P’ =(PysPyeess Py Py ) (1)

Where M is the number of j-identified system rows.

It is obvious that we must define the system reliability as the
maximal probability of al Py, which corresponds to the
identification row C;, which contains only ones. With the
passing of time T of the complex system working (usually
T=max{ty}) the probabilities of correct working of its
blocks Pg(ti), where t is the kth moment of time of the ith
block running, decrease with different vel ocity, also, different
blocks may have different t;. Thelatter requiresthe periodical
re-computing of all the Py and re-considering of the current
system reliability, while running the system. However,
different situations are also possible. For instance, some ith
system blocks may have the reserve blocks, which are
initiated only by failure signa v; of the failed block. There
may be some jth blocks in the system, which have the fixed
running time intervals Aty Theremay also be sth blocksinthe
system, which switch on and off by the external signals 65, that
may be initiated by a human operator. Also, the may be gth
blocks, which reliability may be defined not by their medium
time before failures and their correct working probability, but
rather by their switching on and off number gy, as, for
instance, various switches. For the latter blocks, we must
watch such blocks’ switching during the system’s running
time T and, depending on that number, decrease its modelled
correct working probability according to agivenrule.

Let us assume that the decreasing of the correct working
probability Pg(ti) happens, as usual, by the exponentia law
[1]:

P (ti) = exp(—o,ty ) (8)

Where @; is the coefficient of the correct work probability,
corresponding to the kth moment of theith block working (for
the qth blocks we must substitute t; with gq in the equation of
the type (8)). We may find the initial coefficient a; from the
equation (8), if we have the medium time before failure t; for
the ith blocks and the probability of the correct work Pg(t;) in
that moment of time. Usually such parametersare giveninthe
blocks’ technical documentation. Similarly, we may compute
the values gy for the gth blocks. Thus the estimation of the
current block reliability as well as the whole system’s if the
blocks’ failures are independent, is not complex, since we
may assume that the coefficients a; are not time-dependent.

If we do not know some probability P; or we are not sure if the
system’s blocks failures are independent, the given approach
may result in considerable errors [3]. In some cases, we may
perform the computing of the complex system’s failure
probability based on the orthogonal transforming and the
algebra of the tuples. However, in that case the process of
finding the system’s FAL is much more complex, as are the
computations. We may solve the given problem

10

Available online @ www.ijntse.com



Vladimir Ziniakov. / International Journal of New Technologies in Science and Engineering

approximately using the proposed simplified blocks’
connections’ accounting method.

IIl. A SIMPLIFIED APPROACH TO THE BLOCKS
CONNECTIONS’ ACCOUNTING PROBLEM

If we know only the fact of the connections’ existence or
absence, that is, we know only the topology, but the
connections’ characteristics are unknown, we may increase
the precision of the system’s failure probability changing with
the passing of time by the proposed procedure of simplified
mutual interconnected blocks’ impact and of the values of the
failure probabilities of such blocks. That means that we will
use the probabilities that are approximately equal to the
conditional probabilitiesin the equation (6).

The increase of the blocks’ failure probabilities with the
passing of time is primarily caused by the changes in their
parameters. For instance, with the passing of time the sizes of
the detailsalter dueto friction. That causesthe increasein the
vibrations” amplitude. Thus, the failure probability of such
block increases. Therefore, the failure probability depends on
the expected value (EV) of the block’s parameter. With the
normal distribution, we may describe the mentioned
dependency by the following well-known expression (9):

Pfi (tik) =

=1-o((b -m(t,)) /o) +P((-b -m(t,)) /o) = (9)
=1-F; (t)

Where bi is the maximal allowed values of the ith block
parameter, my(t)) and o; are respectively its expected value
and root mean square, ®(x) is the Gaussian probability
interval, which cannot be expressed via the elementary
functions, but there are tables of its values [5] or its
approximate expressions in the form of a row with the
decreasing members, such as (10):

1 X3 (_1)| 21+1
Dd(X) \/E[X 1!3+...+“(2| +1)x +] (20
Since we usually know the initial expected parameter values
mi(to) for each block and the valuest;, Pg(to), bi, then we can
calculate the value o; from the expression of type (9) with the
usage of either the table of values ®(x) [5], or the simplified
value of ®(x) in the form of the row (10).
The value of g; of each parameter of the each block depends
onthe physical processesinthat block, which are only slightly
atered, which the block is running correctly. Then let us
assume that the root mean square ¢; does not depend on the
block’s running time, although it slightly decreases the
modelling precision. Furthermore, for each ith block we can
calculate the initial values of their decrease coefficients ajq
from the expression of the type (8).
Due to this, before me start modelling the complex system’s
of n interconnected blocks failure probability changing with
the passing of time, we need to create the table of system
blocks interconnections, based on the system’s topology, and
set the dependency of each block’s running time t, from the
system’s working time. After, for each block, based on its
known values of the medium time before failure and its
correct working probability from the equation of type (8), we
must calculate the initial values of their decrease coefficients
a;, and, by setting their maximal allowed values b; and the
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initial expected values m, we must calculate their root mean
square a; from the equation (9) with the usage of the table of
values ®(x) or the row (10).

In the system, there may be blocks that:

During the system’s working time T work all thetimet; (table
1).

During the system’s working time T work episodically (table
2).

Have reserve blocks. In that case the main block during the
system’s work time T works while its failure probability
Psi(ti) is lower than the allowed probability P, after which
we plug inthe reserve block and itsfailure probability Py(trik)
increases by the exponential law (table 3), where t is the
reserve block running time.

During the system’s working time T are switched on and off
depending on the external signal 6; (table 4).

Table 1.

k |1 |2 3 4 5 6 .. | K

ty, | 10* | 2v10* | 3*10% | 410" | 5*10* | 6*10° | ... | T

h

Table 2.

k |1 |2 |3 4 5 6 .. | K

ta, | 10 | 10 | 2*10% | 2v10* | 3*10% | 3*10* | ... | T

h 4 4

ts, |0 | 10 | 20* | 2*10* | 2*10% | 3*10* | ... | T-10*

h 4

Table 3.

k |1 2 3 4 5 6 | K

Pf4 <me <me4 <me4 mem 2me4 Eme . mem
4 4

ta, | 10° | 2*10 | 3*10 | 4*10 | 5*10 | O |0

h 4 4 4 4

Ps | <Pu | <Puia | <Pria | <Puia | <Puta | <Pry | | <Pria

4 4 4

ta | O 0 0 0 0 10° | .| (K-5)AT

.h

Table 4.

k |[1]2|3 |4 5 6 .. | K

g |0j0|1 |1 0 0 !

ti | 0| 0] 10* [ 2x10* | 2x10* | 2¥10* | ... | AT(K-1)/2

h

Also, during the modelling process the expected values of the
blocks’ parameters m(ty), while changing, will be
approaching the dangerous (critical) d;, that has to be set
before the modelling process, and to the maximal alowed
valueb,. It isobviousthat such situation influences the failure
probabilities of those and connected blocks. For instance, the
change in the output voltage of the power block leads to the
change of the enhancing coefficient of the connected
enhancement block. However, the problem of accounting of
the blocks’ connections influences while computing the
failure probabilities still does not have a practically suitable
solution [2]. Thus, there are no simple solution to accounting
of the connected blocks’ failure probabilities, which leads to
major errors while computing the complex system’s failure
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probability changing with the passing of time. An analytical
accounting of that fact in a complex system, even if we know
the required (usually stochastic) dependencies, inevitably
leads to complex computations. Thus, we propose a
simplified approach to that problem.

We can perform the modelling discretely with some time step
AT, which is set before the modelling. Thus the system’s
working time T = kAT, where k=0, 1, ..., K, and K is the
number of modelling steps, that we set a priori.

During the first modelling step (k = 0) the expected values of
the blocks’ parameters are known, and during the subsequent
step in the time moments KAT we define the working time t;,
for each block, and by the eguation (8) we compute the
probabilities of correct work Pg(t) and their corresponding
failure probabilities Pg(t) =1 - Pg(ti). Then, by the
equation (9) with the usage of the table [5] or the approximate
value of ®(x) we calculate the expected values of the blocks’
parameters my(t;).

During the modelling, on each step k for each ith block we
calculate H values of random parameters &, with the normal
distribution and the known excepted value my(t;) and the root
mean square g;. For this, we may calculate each parameter &,
by the formula (11):

Eh =m(ty) +o; [Z‘:J _6] (11)

Where & is a random number, equally distributed in the
interval [0; 1], which we may get using a standard random
number generator.

Then we calculate the medium values of those parameters by
the formula (12)

M, -( 3 |rH a2

If the medium value M;(ty) of some block’s parameters in
some time moment t, fals into a dangerous zone
di < |Mi(ti)| < by, we set the connections’ coefficients w(i) for
this block, that signify the condition of the ith block, and u(i),
which signify the ith blocks’ proximity to the failed and
dangerous block. These parameters may be set asfollows:
w(i) = 0 - failed, w(i) = 2 — dangerous, w(i) = 1 — normal

u(i) =0 - dangerous is farther than over one, u(i)=1 -
dangerous is over one block, u(i)=2 - dangerous is
connected, u(i) = 3 - dangerousis self.

Then we perform the expected value shift according to
formula 13:

n (t,) = m (t,) + o, W(iu()M, (t,)u(M, (t,)) (13)

Where m*;(t;) is the shifted expected value of the ith block,
pH(Mi(t)) is the membership function of the computed
expected value to a certain interval, that is defined via the
following rules:

if —o <M, (t, ) <-b +m(t,). thenu(M, (t,)) =1

if =B +m(t,) <M, (t,) <—d +m(t,).

then U(Mi(tik)) _ max{(Mi(tik)_m(ti0)+di)/(di _h);}
(Mi(tik)_m(tio)"'t).)/(h _di)

if —d +m (o) < M; (t,) <m (&),

mmpwu%»:mngﬁw+mmgwq; }
(M, (t,)—m(t,)+d)/d,
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if m (tiO) < Mi (tik) < di +m (tiO)!
(—Mi(tik)+m(tio)+di)/di;}
(Mi(tik)_m(tio))/di
if di +m (tiO) < Mi (tik) < Q +m (tio)v
(Mi(tik)_m(tio)_h)/(di _t)l);}

thenu(M, (t, ) = max{

(Mi (tik)_m (tiO)_di)/(q _di)

if b +m(t,) <M, (t,) <o, thenp(M, (t,)) =1

Then we set the jth block numbers, that are directly connected
to the dangerous block, and for them set the coefficient values
w(j) = 1, u(j) = 2, and al so make the expected value shift, asin
the formula (13), and calculate p(M;(t)) viathe rules 1)-6).
Then we define the numbers of qth blocks, that are connected
to the found ith block over asingle block, and for them we set
w(q) =1, u(q) = 1, and also make the expected value shift, as
if in the formula (13), and calculate p(Mq(ty)) via the rules
1)-6)

Now, if on the first modelling step (k = ) after the excepted
value shift we’ll have a block, which has its parameter
absolute value more than the maximal allowed (Jmi(ti)| > b)),
we consider such block failed, itsfailure probability isset to 1
(Ps = 1), and the whole system’s failure probability equals 1
(Ps = 1). Otherwise, we must calculate, based on the shifted
expected values, the failure values on al the blocks by the
formula (9), which is a simplified equivalent of the
conditional probabilities computation. Afterwards we may
calculate the failure probability of the whole system, using,
for instance, the polynomial formula (6). We may increase the
computation precision for each system by tuning the
connections’ coefficients w and u according to the
experimental resullts.

During the next modelling steps (k> 0) by the computed
failure probabilities values and their working time moments
from the equations of type (8) we compute the new values of
the decrease coefficients ;. Then, during the next time
moment from the equation (8) we compute their failure
probabilities, from the equation (9) we compute their
expected values my(t;), compute new random values, etc.
Thus, in the proposed modelling method we reach the
accounting of the connections with the dangerous situation by
the discrete changing of the expected value of the current and
the connected blocks, which allows accounting the blocks’
interconnections impact to the change in their failure
probability. We may simplify the procedure even more, if we
discretely alter the values of the decrease coefficients ;.

thmu(Mi(tik»=max{

IV. EXAMPLE OF MODELLING THE SYSTEM’S FAILURE
PROBABILITY MODELLING

Let us examine a system of four blocks, which scheme is
depicted in the Fig. 1.

1 2

— 4

3 €

Figure 1. Example system scheme
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Let us assume, that all blocks work continuously, and that
each block’s medium time before failure is 27 000 hours, and
the initial failure probability is 0.004. The time step value is
10 000 hours.

After making five test modellings, we depicted the resulting
datain the graph seen in the Fig. 2.

1 —

09
0.8
0.7

0.6

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Steps

Figure 2. System failure probability modelling

Asyou can see in the graph, the failure probability prediction
in the simplest case is very stochastic, since a single random
peak may cause the whole system’s instability. In the
following chapters, we will show how to control the system’s
vitality by applying various methods.

V. SUMMARY

The proposed approach to the connections accounting method
between the blocks of a complex system while modelling its
failure probability with the passing of time allows accounting
the impact of the connected blocks, thusincreasing the failure
probability prognosis.

We implemented the described algorithm as a C# computer
program. We may increase the reliability and precision of the
modelling by tuning the connection coefficients and the
sampling intervals according to the running results and the
prediction of the failure of existing systems.
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